
Noah Vendrig

SDD MAJOR PROJECT 29/06/2022

LUNG X-RAY CLASSIFIER APP

Table of Contents
Program... 2

Project Log .. 0

Logbook ... 0

Gantt chart .. 2

Actual Progress ... 3

Annotated Source Code .. 0

IPO Chart ... 0

cli.py .. 0

app.py ... 1

predict.py .. 4

load_and_train.py ... 6

Testing Report ... 11

Selecting the Optimal Convolution Neural Network Model Configuration 11

Model Testing (training) ... 12

Graphs obtained from training results (Tensorboard):... 12

Chosen Model: 6-conv-256-nodes-2-dense-3-dropout .. 13

Validation vs Training Loss .. 14

Validation vs Training Accuracy .. 15

Selected Model layer info: .. 15

Testing report of the software package .. 0

Quality Assessment ... 0

User Documentation ... 0

Technical Documentation ... 0

System Documentation ... 0

Algorithm description for custom logic module ... 1

Pseudocode: .. 1

Flowchart .. 1

Source code ... 2

cli.py ... Error! Bookmark not defined.

app.py .. Error! Bookmark not defined.

predict.py ... Error! Bookmark not defined.

load_and_train.py .. Error! Bookmark not defined.

Refined Data Dictionary .. 0

cli.py .. 0

app.py ... 0

Predict.py .. 2

Load_and_train.py .. 4

Structure Chart.. 0

Context Diagram ... 0

Level 1 Dataflow Diagram ... 0

Level 2 Dataflow Diagram ... 1

Program
Submitted as zip file with lung-xray-classifier.exe inside. Refer to user documentation for usage.

Project Log
Logbook

Date Tasks Achieved Issues/Solutions Reflection on progress Resources Used
2/05 Going to create an app that classifies an X-

ray as either COVID or healthy
-need a binary classifier Have a clear understanding of what needs

to be done and how much needs needs to
be done.

3/05 I have decided to continue with rapid
application development approach, as it is
best suited to this project – solo developer,
short time span. Continuing research

Use tensorflow instead of Pytorch
since there are more tutorials
available

 Youtube tutorials + stack
overflow

10/5 Well underway with the flowcharts,
structure charts, DFD’s and IPO chart.

No issues, may need to double
check later to make sure that
they’re right

 NESA Software Design and
Development Course
Specifications

12/5 Took a couple goes to figure out the
installations. Currently using an Anaconda
environment to install all the packages in.

Anaconda is the solution to broken
installations.

A tiny bit behind but shouldn’t cause too
many problems

Stack overflow + googling

17/5 Have created a working binary classifier Was having a bit of trouble with
the numpy arrays created in the
loop that iterates through the
database. Fixed it, just needed to
look at the docs to understand the
usage properly

it doesn’t have much accuracy and is pretty
much useless but it serves as a baseline for
the more extensive model to be created
later.

Numpy docs

24/5 Working flask app nearly complete. Had trouble figuring out the upload
file button, found a good tutorial
and adapted the code.

Was initially considering using tkinter
instead but I’m more comfortable with
integrating html + css webpage. I also think
that a web page would make the software
more accessible, since it can be run on a
server for anyone to access.

Online tutorials

30/5 Finishing up with the fully functional GUI. Had a stroke whilst fiddling with
the CSS to make the uploaded
image appear in a column next to

If time permits, the UI could be touched up
a bit more so that it isn’t just an upload
button and a title.

My blood sweat and tears

the upload buttons. Really didn’t
want to cooperate but it works for
now.

2/6 Optimal model complete. I’m identifying it
by: 8 conv layers, 2 dense, 3 dropout and
256 nodes.

Tried to make A LOT of models so
that there would be a larger range
to choose from but my GPU
freaked out and froze the
computer. Had to limit to 6 model
configurations that I thought would
work best.

I’m happy with the model, no need to go
through more hassle to make a better
model.

Stack overflow + googling

9/6 Sphinx documentation done User documentation looks very
mint, I’m glad I went through the
hassle of learning sphinx

Happy with user docs, good progress. Still a
tiny bit behind the overall schedule but it’s
not that far behind.

Stack overflow + googling

14/6 Documentation finished! Had to use debug mode a lot to
finish data dictionary but didn’t
have any problems.

20/6 Testing report almost finished Turns out there are some layout
issues with the styling in Internet
Explorer and Firefox. They aren’t
used as much anymore (Chrome is
more dominant) so I will only fix
that issue if time permits at the
end.

Almost done with everything, still over a
week to go. No concerns with running
behind schedule

NESA Software Design and
Development Course
Specifications

28/6 Executable has been created Its’s a massive file but not much I
can do about it since it has to have
all the modules (tensorflow etc) +
files. It works so I’m happy.

Basically done! Might double check
documentation and make sure everything
is ready for submission.

Gantt chart

Actual Progress (drawn over the original Gantt chart in purple)

Annotated Source Code
IPO Chart

User Input Process Output
Path of file to upload (str) Check if the filetype is allowed

(png, jpeg, jpg)

Save the file locally

Read the file into a numpy
array and resize the image (so
it can be displayed)

Use the image path to
generate a prediction label.

Display success message if
filetype is allowed, else display
error message to user

Display the resized image

Display the prediction label

cli.py
__author__ = 'Noah Vendrig'
__license__ = 'MIT' # copy of the license available @ https://prodicus.mit-
license.org/
__version__ = '4.8'
__email__ = 'noahvendrig@gmail.com'
__github__ = "github.com/noahvendrig" # @noahvendrig
__course__ = 'Software Design and Development'
__date__ = '21/06/2022'
__description__ = 'Flask App that allows users to classify lung X-Ray images
into categories of either COVID-19 or Normal.'
__info__ = "info available at: https://github.com/noahvendrig/covid-xray-
classifier/readme.md" # some info available here
__pyver__ = '3.8.10'

from app import application

"""Script that is run from command line to launch the app"""

if __name__ == "__main__":
 print("---
--")
 print(f"Developed by {__author__}, {__date__}")
 print(f"This project is a {__description__}")
 print("---
--\n")
 print()
 print("Starting application...")

 application() # launch app

app.py
from predict import predict # v1.0.0 by Noah Vendrig (06/2022) - predict
function from './predict.py'
import cv2 # v4.5.5 by Intel Corporation, Willow Garage, Itseez (06/2000) -
Used for image processing: converting RGB images to numpy arrays and resizing
images so that they are compatible with the model.
from waitress import serve # v2.1.2 by Zope Foundation and Contributors
(30/12/2011) - Production WSGI server for the web app.
import os
import webbrowser

UPLOAD_FOLDER = 'static/files/' # folder to store uploaded images

import socket

#from pathlib import Path
[f.unlink() for f in Path("./static/files").glob("*") if
f.is_file()] #remove all files in the folder not needed right now

import os
from flask import Flask, flash, request, redirect, url_for, render_template #
v2.1.2 by Armin Ronacher (01/04/2010) - Allows for the creation of the GUI as
a web application hosted on local IP
from werkzeug.utils import secure_filename # v2.1.2 by Armin Ronacher
(10/12/2007) - Create WSGI server for Flask

import logging

templatesDir = './templates' # directory where the templates are stored
staticDir = './static' # directory for static files
app = Flask(__name__, template_folder=templatesDir, static_folder=staticDir) #
create the Flask app

app.secret_key = "secret key" # needed for flask sessions
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER # set the upload folder
app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024 # 16 MB

log = logging.getLogger('werkzeug')
log.setLevel(logging.ERROR) # only log errors in flask app, nothing else so
that console isn't cluttered

ALLOWED_EXTENSIONS = set(['png', 'jpg', 'jpeg']) # will only accept the
following image types

def resize(im):
 """Resizes image to a width of 500 so that it can be displayed on the
webpage

 Args:
 im (numpy arr): Input image as an array

 Returns:
 numpy arr: Resized image
 """
 h, w, channels = im.shape # get the height, width and channels of the
image
 max_w = 500 # maximum width
 ratio = h/w # ratio of height to width

 resized_h, resized_w = int(round(max_w*ratio)), max_w
 dims = (resized_w, resized_h) # get dimensions that retain image's aspect
ratio but have maximum width of 500

 resized_im = cv2.resize(im, dims) # resize image to specified dimensions
 return resized_im

def allowed_file(filename):
 """Check if file is allowed to be uploaded (filetypes is either png, jpg
or jpeg)

 Args:
 filename (str): name of the file to be uploaded (e.g. myimage.jpg)

 Returns:
 bool: Whether the file is allowed to be uploaded or not
 """
 return '.' in filename and filename.rsplit('.', 1)[1].lower() in
ALLOWED_EXTENSIONS

@app.route('/')
def upload_form():
 """Displays the main page with the file upload form
 """
 return render_template('index.html',)

@app.route('/', methods=['POST'])
def upload_image():
 """Upload the image selected by the user

 Returns:
 str: filename of the image uploaded
 str: predictions of the image uploaded
 """
 if 'file' not in request.files:
 flash('No file part') # display error message

 return redirect(request.url)
 file = request.files['file']
 if file.filename == '':
 flash('No image selected for uploading') # display error message
 return redirect(request.url)

 if file and allowed_file(file.filename): # if the file is allowed and has
been uploaded
 filename = secure_filename(file.filename)
 path = os.path.join(app.config['UPLOAD_FOLDER'], filename) # save the
file to the upload folder
 file.save(os.path.join(app.config['UPLOAD_FOLDER'], filename))
 im = cv2.imread(path) # read image from disk into array
 os.remove(path) #delete the old file
 im = resize(im) # resize the image to be displayed
 cv2.imwrite(path, im) # save the image locally
 print(f"Image Saved To {path}")
 prediction = predict([path]) # predict the image
 print(f"Prediction: {prediction}")
 return render_template('index.html', filename=filename,
prediction=prediction) # display the image prediction and display the resized
image to the user.

 else:
 flash('Allowed image types are -> png, jpg, jpeg, gif') # display
error message if the filetype is not allowed
 return redirect(request.url)

@app.route('/display/<filename>')
def display_image(filename):

 """Display the uploaded image

 Args:
 filename (str): Filename of uploaded file
 """
 return redirect(url_for('static', filename='files/' + filename), code=301)

@app.route('/docs')
@app.route('/')
def docs():
 """Redirect the user to the documentation page (/docs)
 """
 return redirect(url_for('static', filename='build/html/index.html'),
code=302)

def application():
 """Host the App on local IP Address (port 5000 by default)

 """
 port = 5000 # my favourite port
 hostname=socket.gethostname()
 ip_addr=socket.gethostbyname(hostname) # get ip of the user's machine

 webbrowser.open(f"http://{ip_addr}:{port}", new=1) # opens the app in a
new browser window
 print(f"App Running at: {ip_addr}:{port}") # indicate where the app is
hosted
 try:
 serve(app, host="0.0.0.0", port=5000) # for production
 # app.run(debug=True, host="0.0.0.0") # only for development
 except Exception as e:
 print(e) # oh no there was an error!!

application() # not needed since running from cli.py

predict.py
__version__ = '1.0.0'

Required modules
import numpy as np # v1.23.0 by Travis Oliphant (2006) - Used to work with
arrays generated by OpenCV, Tensorflow also requires that data be passed in as
numpy arrays.
import cv2 # v4.5.5 by Intel Corporation, Willow Garage, Itseez (06/2000) -
Used for image processing: converting RGB images to numpy arrays and resizing
images so that they are compatible with the model.
import tensorflow as tf # v2.9.0 by Google Brain Team (09/11/2015) - Used by
Keras to compile, train and evaluate the CNN model.
import pickle
import os

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # tensorflow INFO, WARNING, and ERROR
messages are not printed

class Classifier:
 """Classifier Class used to evaluate lung-xray images into either covid or
normal
 """
 def __init__(self, model_path, img_paths):
 """Initialise the Classifier class' attributes

 Args:
 model_path (str): Path to the CNN Model created in Tensorflow
 img_paths (list): list of paths to the image to be evaluated by
the model. Currently the list is only of one element
 """

 self.model = tf.keras.models.load_model(model_path) # Loads a compiled
Keras model instance
 self.labels = pickle.loads(open('labels.pickle', "rb").read()) #
deserialise the pickle object so that the labels can be used in script
 for img in img_paths: # iterate through list of img paths
 self.Classify(img) # call the classify function for every image
inputted (currently only one image)

 def ImageToArray(self, file):
 """Converts input image into a numpy array

 Args:
 file (str): path to the image to be converted to numpy array

 Returns:
 img_arr (numpy arr): numpy array of the image
 """
 # reads an image in the BGR format
 try:
 img_arr = cv2.imread(file) # returns a 3d array
 img_arr = cv2.cvtColor(img_arr, cv2.COLOR_BGR2RGB) # convert BGR
-> RGB
 return img_arr
 except Exception as e:
 print("INCORRECT FILE PATH") # incase there are issues with the
file path
 os._exit(0) # exit the program but no error message to clog
terminal when debuggig

 def Classify(self, img):
 #
 """Generates a prediction for the submitted image

 Args:
 img (str): Path to the image to be classified
 """
 # actual_label = img.split("/")[-1]
 img_arr = self.ImageToArray(img) # convert to numpy array
 new_img = cv2.resize(img_arr, (150,150)) # resize image so that it can
be used for training
 # new_img = (new_img[::2, ::2]/255).astype('float32')
 new_img = (new_img/255).astype('float32') # normalise values to range
from 0 to 1 so computation is easier. convert to float
 new_img = tf.expand_dims(new_img, 0) # model expects a dataset so we
expand_dims. shape goes from (150,150,3) --> TensorShape([1,150,150,3])

 try:

 self.prediction = self.model.predict(new_img) # returns list with
probabilities of being each label
 # print(self.prediction[0])
 self.prediction = np.argmax(self.prediction, axis=None, out=None)
convert from categorical back to index

 self.prediction = self.labels[self.prediction] # get the string
from the index so it can be displayed

 except:
 return "Error in Model Prediction", os._exit(0) # display error
message

def predict(input):
 """This is the main function that drives the generation of the prediction

 Args:
 input (list): list of paths to the image to be evaluated by the model.
Currently the list is only of one element but can be further expanded to
evaluate multiple images

 Returns:
 str: 'prediction' attribute of the Classifier Instance, which is the
model prediction of either 'Normal' or 'Covid'
 """
 # c = Classifier("6-conv-128-nodes-2-dense-1654694547.model",
["./dataset/normal/images/Normal-10000.png" , "./dataset/covid/images/COVID-
3615.png"])

 # res = Classifier("6-conv-128-nodes-2-dense-1655171754.model", input)
 res = Classifier("6-conv-128-nodes-2-dense-1656432632.model", input) #
create instance of the Classifier class that uses the previously trained model

 return res.prediction # return the prediction made by the model to the UI

print(predict(["./dataset/normal/images/Normal-10000.png"]))

load_and_train.py
import tensorflow as tf # v2.9.0 by Google Brain Team (09/11/2015) - Used by
Keras to compile, train and evaluate the CNN model.
import numpy as np # v1.23.0 by Travis Oliphant (2006) - Used to work with
arrays generated by OpenCV, Tensorflow also requires that data be passed in as
numpy arrays.
import cv2 # v4.5.5 by Intel Corporation, Willow Garage, Itseez (06/2000) -
Used for image processing: converting RGB images to numpy arrays and resizing
images so that they are compatible with the model.

from keras.models import Sequential # v2.9.0 by Francois Chollet (27/03/2015)
- Keras allows for the construction and training of the convolutional neural
network model used by the software. It also allows for the model to be
evaluated and tested to prevent overfitting.
from keras.layers import Dense, Conv2D, MaxPooling2D, Flatten, Dropout
from keras.utils import np_utils

from sklearn.model_selection import train_test_split # v1.1.1 by David
Cournapeau (06/2007) - Responsible for splitting the dataset into portions for
training and testing (Model currently uses a split of 80% train, 20% test)

import os
import time
import pickle

if tf.test.gpu_device_name():# check if gpu device is available to be used
 print('Default GPU Device: {}'.format(tf.test.gpu_device_name()))
 is_gpu = len(tf.config.list_physical_devices('GPU')) > 0
 print(is_gpu)
else:
 print("Please install GPU version of TF")

class ModelGenerator:
 def __init__(self, labels, path):

 """_summary_

 Args:
 labels (_type_): _description_
 path (_type_): _description_
 """
 self.labels = labels
 print(labels)
 self.X = []
 self.y = []
 self.path = path

 self.X_train = []
 self.X_test = []
 self.y_train = []
 self.y_test = []
 self.model = Sequential()

 self.MODEL_NAME = ""

 def CheckGPU(self):
 """Check that there is a GPU device for Tensorflow to use
 """

 if tf.test.gpu_device_name():
 print('Default GPU Device: {}'.format(tf.test.gpu_device_name()))
 else:
 print("Please install GPU version of TF")

 if tf.test.gpu_device_name():
 print('Default GPU Device: {}'.format(tf.test.gpu_device_name()))
 is_gpu = len(tf.config.list_physical_devices('GPU')) > 0
 print(is_gpu)
 else:
 print("Please install GPU version of TF")

 def ImageToArray(self, file):
 """Converts an image from RGB to numpy array so that it can be
processed.

 Args:
 file (str): Path to the file to be converted to an array

 Returns:
 numpy arr: Numpy array of the image
 """
 img_arr = cv2.imread(file) # reads an image in the BGR format
 img_arr = cv2.cvtColor(img_arr, cv2.COLOR_BGR2RGB) # BGR -> RGB
 return img_arr

 def ProcessImages(self):
 """ Generate the array of all the images in the dataset and t array
with the corresponding labels """

 for label in self.labels: # iterate through the dataset
 for filename in os.listdir(self.path+label+"/images/")[:3615]: #
only 3615 files available in covid dataset, need to limit so that for loop
doesnt try and iterate further since normal dataset has 10,000 imgs
 # divide by 255 to normalise the data
 file = str(f"{self.path}{label}/images/{filename}")
 arr = self.ImageToArray(file)
 # having issues with appending np array (it clears the array
each time, so we conver to python list first and then make the whole thing a
np array later
 arr = arr[::2, ::2].tolist() # Reduce size by factor of 2,
convert to list so we can append and also shrink resolution to 150x150
 label_index = self.labels.index(label) # get the index of the
label
 self.X.append(arr) # add to array
 self.y = np.append(self.y, label_index)
 print(f"DONE: {label}")

 def ProcessArrays(self):
 """ Process the training arrays to be compatible with the model """
 self.X = np.array(self.X) # convert to np array
 self.X = self.X/255 # normalise values to range from 0 to 1 so
computation is easier. convert to float
 self.X = self.X.astype('float32') # convert to float

 self.y = np.array(self.y, dtype='int8') # convert to np array of int
 # y = tf.one_hot(y, 3)
 # one hot encode outputs
 self.y = np_utils.to_categorical(self.y) # convert labels vector to
matrix of binary values

 def SplitDataset(self):
 """Splits the dataset into training and testing sets.
 """
 self.X_train, self.X_test, self.y_train, self.y_test =
train_test_split(self.X, self.y, test_size=0.2) # split dataset into 80%
train, 20% test since we have small-ish dataset

 def BuildModel(self):
 """Add layers to the model
 """
 # print(self.labels)
 self.model.add(Conv2D(32, (3, 3), activation='relu',
kernel_initializer='he_uniform', padding='same', input_shape=(150, 150, 3))) #
shape = X.shape[1:] # Add convolution layer
 self.model.add(Conv2D(32, (3, 3), activation='relu',
kernel_initializer='he_uniform', padding='same'))
 self.model.add(MaxPooling2D((2, 2))) # Add max pooling layer
 self.model.add(Dropout(0.2))

 self.model.add(Conv2D(64, (3, 3), activation='relu',
kernel_initializer='he_uniform', padding='same')) # Add convolution layers
 self.model.add(Conv2D(64, (3, 3), activation='relu',
kernel_initializer='he_uniform', padding='same'))
 self.model.add(MaxPooling2D((2, 2))) # Add max pooling layer
 self.model.add(Dropout(0.2))

 self.model.add(Conv2D(128, (3, 3), activation='relu',
kernel_initializer='he_uniform', padding='same')) # Add convolution layers
 self.model.add(Conv2D(128, (3, 3), activation='relu',
kernel_initializer='he_uniform', padding='same'))
 self.model.add(MaxPooling2D((2, 2))) # Add max pooling layer
 self.model.add(Dropout(0.2))

 self.model.add(Conv2D(256, (3, 3), activation='relu',
kernel_initializer='he_uniform', padding='same')) # Add convolution layers

 self.model.add(Conv2D(256, (3, 3), activation='relu',
kernel_initializer='he_uniform', padding='same'))
 self.model.add(MaxPooling2D((2, 2))) # Add max pooling layer
 self.model.add(Dropout(0.2))

 # example output part of the model
 self.model.add(Flatten()) # transform pooled feature map that is
generated in the pooling step into a 1D vector
 self.model.add(Dense(128, activation='relu',
kernel_initializer='he_uniform')) # dense layer
 self.model.add(Dense(len(self.labels), activation='softmax')) # final
layer dense 2 since we have 2 labels

 # compile model
 self.model.compile(# compile the model
 loss='binary_crossentropy', # USE SPARSE if WE ARE
USING THE ACTUAL LABEL NUMBERS E.G 1,2 BUT WE ALREADY CONVERTED TO CATEGORICAL
 metrics=['accuracy'],
 optimizer='adam'
)
 print(self.model.summary()) # print summary of model

 def TrainModel(self):
 """ Trains the model using the dataset provided: epochs=20, batch
size=32, validation split=0.2
 """
 # print(self.X_train.shape)
 # print(self.y_train.shape)
 log_dir = f"logs/fit/6-conv-256-nodes-2-dense-3-dropout-
{int(time.time())}"
 tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir,
histogram_freq=1) # for logging on tensorboard (get metrics for every model)

 history = self.model.fit(# train the model
 self.X_train,
 self.y_train,
 epochs=8, # determined that 8 epochs was neccessary for optimal
model
 batch_size=32,
 validation_data=(self.X_test,self.y_test),
 callbacks=[tensorboard_callback]
)
 print(history)

 def EvaluateModel(self):
 """Get loss value & metrics values for the model in test mode.
 """

 evaluation = self.model.evaluate(self.X_test, self.y_test, verbose=0)
#evaluate model
 print(evaluation)

 def SaveModel(self):
 """Save the model so that it can be accessed later without having to
retrain each time
 """

 self.model.save(f"./6-conv-128-nodes-2-dense-
{int(time.time())}.model") # save model to file
 f = open('labels.pickle', "wb")
 f.write(pickle.dumps(self.labels)) # serialises the labels so that it
can be stored on disk and later deserialised for use.
 f.close()

if __name__ == '__main__':
 gen = ModelGenerator(['normal', 'covid'], "./dataset/") # create
modelgenerator instance and begin the data processing + model creation
 gen.ProcessImages()
 gen.ProcessArrays()
 gen.SplitDataset()
 gen.BuildModel()
 gen.TrainModel()
 gen.EvaluateModel()
 gen.SaveModel()

Testing Report
Selecting the Optimal Convolution Neural Network Model Configuration

Goal To create a model with the lowest validation loss and highest validation accuracy,
whilst ensuring that the model hasn’t over/under fit. Below is a graph which
illustrates the indications of over/under fitting on a Validation Loss vs Epoch graph.

Met? Yes, the optimal model configuration has been identified, and it has been trained to
prevent overfitting/underfitting.

Model Testing (training)
All models:

name val loss (% after 20 epochs) val acc (after 20 epochs)
6-conv-128-nodes-2-dense 0.1977 96.47
8-conv-128-nodes-2-dense 0.2259 95.09
6-conv-128-nodes-2-dense-1-
dropout 0.1837 95.85
8-conv-256-nodes-2-dense 0.2024 96.06
8-conv-256-nodes-2-dense-3-
dropout 0.1043 96.47

Graphs obtained from training results (Tensorboard):
As can be seen from the Validation loss line graph of all models (and is emphasised in the graph with
extra smoothing), overfitting appears to be present after the 8th epoch, and underfitting is present
before the 8th epoch. Therefore the model will be trained to 8 epochs to be optimal.

Validation Loss (all models)

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0 2 4 6 8 10 12 14 16 18

Validation Accuracy (all models)

Validation Loss (all models) (extra smoothing)

All models:

name val loss (% after 8 epochs) val acc (after 8 epochs)
6-conv-128-nodes-2-dense 0.1977 96.47
8-conv-128-nodes-2-dense 0.2259 95.09
6-conv-128-nodes-2-dense-1-
dropout 0.1837 95.85
8-conv-256-nodes-2-dense 0.2024 96.06
6-conv-256-nodes-2-dense-3-
dropout 0.1043 96.47

Chosen Model: 6-conv-256-nodes-2-dense-3-dropout
This model has been selected as it has the highest validation accuracy and lowest validation loss over
20 epochs without overfitting.

 Below is information on the layers applied to the model. Below are the training/validation
loss/accuracy graphs for the chosen model. As can be seen, no overfitting is present since it has been
trained to only 8 epochs.

After retraining to 8 epochs, there is a slight dip in validation accuracy (it is now ranked closely 3/4)
however this is not of large concern since the validation loss is significantly lower than the others,
meaning that this model configuration has much higher confidence.

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0 2 4 6 8 10 12 14 16 18

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0 2 4 6 8 10 12 14 16 18

Validation vs Training Loss
(blue=train, red=validation)

94.8
95

95.2
95.4
95.6
95.8

96
96.2
96.4
96.6

Va
lid

at
io

n
Ac

cu
ra

cy
 (%

)

Model Configuration

Validation Accuracy for each model configuration after 20
epochs

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0.2

Va
lid

at
io

n
Lo

ss

Model Configuration

Validation Loss for each model configuration after 20 epochs

Validation vs Training Accuracy
(blue=train, red=validation)

Selected Model layer info:

Model: "sequential"
___ ____________________________ _______
 Layer (type) Output Shape Param #
=== ============================ =======
 conv2d (Conv2D) (None, 150, 150, 32) 896

 conv2d_1 (Conv2D) (None, 150, 150, 32 9248

 max_pooling2d (MaxPooling2D) (None, 75, 75, 32) 0

 dropout (Dropout) (None, 75, 75, 32) 0

 conv2d_2 (Conv2D) (None, 75, 75, 64) 18496

 conv2d_3 (Conv2D) (None, 75, 75, 64) 36928

 max_pooling2d_1 (MaxPooling (2D)) (None, 37, 37, 64) 0

 dropout_1 (Dropout) (None, 37, 37, 64) 0

 conv2d_4 (Conv2D) (None, 37, 37, 128) 73856

 conv2d_5 (Conv2D) (None, 37, 37, 128) 147584

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0 1 2 3 4 5 6 7 8

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

0 1 2 3 4 5 6 7 8

 max_pooling2d_2 (MaxPooling 2D) (None, 18, 18, 128) 0

 dropout_2 (Dropout) (None, 18, 18, 128) 0

 conv2d_6 (Conv2D) (None, 18, 18, 256) 295168

 conv2d_7 (Conv2D) (None, 18, 18, 256) 590080

 max_pooling2d_3 (MaxPooling 2D) (None, 9, 9, 256) 0

 dropout_3 (Dropout) (None, 9, 9, 256) 0

 flatten (Flatten) (None, 20736) 0

 dense (Dense) (None, 128) 2654336

 dense_1 (Dense) (None, 2) 258

=== =========================== =======
Total params: 3,826,850
Trainable params: 3,826,850
Non-trainable params: 0

Testing report of the software package
Test Report

Item Being Tested: Lung X-Ray Classification App

Date: 17/6/22

Tester: Noah Vendrig

Type of test: Black box test

Appendix 1: Test actions and expected results

Interpretation of Test

Though all the tests passed, there are some issues with the software that I’d like to note:

Observed Issue Possible Solution Evidence (if any)
In Internet Explorer and Firefox, the
uploaded image is not displayed in
the corner, and it looks out of place
from a UI perspective. Chrome and
Edge display well.

Fix styling of the
webpage

Firefox:

Internet Explorer:

Chrome:

Edge:

There should be a loading bar or
something similar to indicate to the
user that their prediction is
generating. If they are impatient,
they may just assume that the
program is not working and close it.

Shorten loading times
or add loading bar

Appendix 1. Test actions and expected results

Action Expected Result Actual Result Pass/Fail Comment
IP is entered into web page Web app is displayed Web app is displayed Pass
Access docs through IP/docs Routed to docs site Routed to docs site Pass
Image is uploaded through
upload form

File name is displayed File name is displayed Pass

Image is submitted Image + prediction is
displayed

Image + prediction is displayed Pass

Upload another image New filename is displayed New File name is displayed Pass

Quality Assessment
Standard Does it satisfy the requirement?
Changeability Yes, the app can be used as exe, the scripts can be adapted to run on a server, and

there is a mobile view supported. This means that the app can be expanded very easily.
Usability The app is very usable, as it has a simple UI and the user docs are within reach of the

user once opening the app. This means that even if they are unfamiliar with the
software they can learn how to use it from the docs

Compatibility Partly, the app works on different browsers however the styling is not preserved
between all. For OS compatibility, it has only been tested on Windows

Seeing as the software has satisfied all three quality standards, it can be determined that the
software is of high quality, and will satisfy the user/client.

User Documentation
User documentation for the application is available either through the app or at
http://noahvendrig.com/docs/html

Technical Documentation
System Documentation
More documentation available here: http://noahvendrig.com/docs/html

Instructional Video attached with this document.

http://noahvendrig.com/docs/html
http://noahvendrig.com/docs/html

Algorithm description for custom logic module
The ‘ImageToArray(file) module is a function used in both predict.py and load_and_train.py as it is
used for providing an image as a numpy array, which is required to pass through the model (for
training and generating predictions). Below is the algorithm description for this module.

Pseudocode:
BEGIN ImageToArray (parameter=filepath)
 try:
 array = read(filepath) # read RGB image using opencv
 return array
 except error:
 display "Incorrect file path, submitted file could not be found"
 exit
END ImageToArray

Flowchart

Source code
Click here for the source code

Refined Data Dictionary
cli.py
(no vars)

app.py

Variable Name Datatype Example Description
app flask.app.Flask <Flask 'app'> Flask app
log logging.Logger <Logger werkzeug (ERROR)> Used to limit the amount of content logged by flask (only show

‘important’ logs)
ALLOWED_EXTENSIONS set {'jpeg', 'png', 'jpg'} Set of permitted file extensions for input images
h integere 300 Height of the image that is passed into the image resizing

function
w intger 300 Width of the image that is passed into the image resizing

function
channels integer 3
max_w integer 500 Maximum width of an image to be displayed on the screen (at

the discretion of the developer, I chose 500px)
ratio float 1.0 Ratio of width to height so that the image can be scaled whilst

retaining its aspect ratio
resized_h integer 500 Height after resizing
resized_w Integer 500 Height after resizing
dims tuple (500, 500) Tuple of (resized_w, resized_h) representing the dimensions of

the image
resized_im Numpy.ndarray of unsigned 8 bit

integers [0, 255]
[[[45, 45, 45],
 [43, 43, 43],
 [39, 39, 39],
 ...,
 [60, 60, 60],
 [54, 54, 54],

Resized image as a numpy array

 [50, 50, 50]]]
file werkzeug.datastructures.FileStorage <FileStorage: 'Viral

Pneumonia-13.png'
('image/png')>

File uploaded through the upload form

filename string 'Viral_Pneumonia-13.png' Filename of uploaded file
im List of Numpy.ndarrays of unsigned

8 bit integers [0, 255]
[[[
 [10, 10, 10],
 [16, 16, 16],
 [26, 26, 26],
 ...,
 [46, 46, 46],
 [46, 46, 46],
 [46, 46, 46]
]]]

Uploaded imagethat has been read into opencv as numpy array

prediction string ‘normal’ Model prediction of uploaded image. Is equal to the prediction
attribute of Classifier (from predict.py)

path string 'static/files/Viral_Pneumonia-
1330.png'

Path to the location that the uploaded image was saved in

port integer 5000 Port number used for the application
hostname string 'DESKTOP-ABCD2EF' Port for the web app to occupy
ip_addr string '123.456.78.9' Ip address of the local machine in which the web app will be

hosted on

Predict.py

Variable Name Datatype Example Description
model Keras Sequential

object
<keras.engine.sequential.Sequential
object at 0x000001A7A648D9D0>

A compiled Keras model instance

labels List of strings ['normal', 'covid'] Labels that the dataset is trained on
img string './dataset/normal/images/Normal-

10000.png'
Path to the image to be evaluated

img_arr Numpy.ndarray of
unsigned 8 bit
integers
Shape: (299, 299, 3)

[[[45, 45, 45],
 [43, 43, 43],
 [39, 39, 39],
 ...,
 [60, 60, 60],
 [54, 54, 54],
 [50, 50, 50]]]

Numpy array of the image so that it can be processed and fed to the model

new_img Tensor of 32 bit
floats (single
precision)
Tensor Shape: ([1,
150, 150, 3])

[[[[0.6039216 , 0.6039216 ,
0.6039216],
 [0.57254905, 0.57254905,
0.57254905],
 [0.54509807, 0.54509807,
0.54509807],
 ...,
 [0.01176471, 0.01176471,
0.01176471],
 [0.01960784, 0.01960784,
0.01960784],
 [0.01960784, 0.01960784,
0.01960784]]]]

Resized version of the img_arr, but normalised and expanded to be compatible
with the model

prediction string ‘covid’ Attribute of Classifier instance
res __main__.Classifier

Object
<__main__.Classifier object at
0x000001C36944A130>

Instance of Classifier class

input List of strings [“/images/Normal-10000.png"] List containing the path to the image to be evaluated

Variable Name Datatype Example Description
model Keras Sequential

object
<keras.engine.sequential.Sequential
object at 0x000001A7A648D9D0>

A compiled Keras model instance

labels List of strings ['normal', 'covid'] Labels that the dataset is trained on
img string './dataset/normal/images/Normal-

10000.png'
Path to the image to be evaluated

img_arr Numpy.ndarray of
unsigned 8 bit
integers
Shape: (299, 299, 3)

[[[45, 45, 45],
 [43, 43, 43],
 [39, 39, 39],
 ...,
 [60, 60, 60],
 [54, 54, 54],
 [50, 50, 50]]]

Numpy array of the image so that it can be processed and fed to the model

new_img Tensor of 32 bit
floats (single
precision)
Tensor Shape: ([1,
150, 150, 3])

[[[[0.6039216 , 0.6039216 ,
0.6039216],
 [0.57254905, 0.57254905,
0.57254905],
 [0.54509807, 0.54509807,
0.54509807],
 ...,
 [0.01176471, 0.01176471,
0.01176471],
 [0.01960784, 0.01960784,
0.01960784],
 [0.01960784, 0.01960784,
0.01960784]]]]

Resized version of the img_arr, but normalised and expanded to be compatible
with the model

prediction string ‘covid’ Attribute of Classifier instance
res __main__.Classifier

Object
__main__.Classifier object at
0x000001C36944A130

Instance of Classifier class

input List of strings [“/images/Normal-10000.png"] List containing the path to the image to be evaluated

Load_and_train.py

Variable
Name

Datatype Example Description

is_gpu bool TRUE Used to check whether there is a GPU available for training.
gen class ‘__main__.ModelGenerator' __main__.ModelGenerator object

at 0x00000237DE9995E0
Instance of the ModelGenerator class

labels List of strings ['normal','covid'] Attribute of class ModelGenerator which has the labels that the model
is trained to predict on.

X Numpy ndarray of array([[[[
0.42352942, 0.42352942],
 [[0.24705882, 0.24705882,
0.24705882],
 [0.47843137, 0.47843137,
0.47843137],
 [0.47058824, 0.47058824,
0.47058824],
 ...,
 [0.43529412, 0.43529412,
0.43529412],
 [0.39215687, 0.39215687,
0.39215687],
 [0.3529412 , 0.3529412 ,
0.3529412]],
 [0.37254903, 0.37254903,
0.37254903],
 [0.34509805, 0.34509805,
0.34509805],
 [0.3137255 , 0.3137255 ,
0.3137255]]]], dtype=float32)

All of the datasetimages in array form

Y Numpy ndarray of 32 bit floats. array([[0., 1.],
 [0., 1.],

All the labels matching those images.

 [0., 1.],
 [1., 0.],
 [0., 1.],
 [0., 1.],
 [0., 1.],
 [1., 0.],
 [1., 0.],
 [1., 0.],
 [1., 0.],
 [1., 0.],
 [0., 1.],
 [1., 0.],
 [0., 1.],
 [1., 0.]], dtype=float32)

path string ./dataset Path to dataset
X_train Numpy ndarray of 32 bit floats array([[[[

0.42352942, 0.42352942],
 [[0.24705882, 0.24705882,
0.24705882],
 [0.47843137, 0.47843137,
0.47843137],
 [0.47058824, 0.47058824,
0.47058824],
 ...,
 [0.43529412, 0.43529412,
0.43529412],
 [0.39215687, 0.39215687,
0.39215687],
 [0.3529412 , 0.3529412 ,
0.3529412]],
 [0.37254903, 0.37254903,
0.37254903],

80% of X has been allocated to this variable for model training purposes

 [0.34509805, 0.34509805,
0.34509805],
 [0.3137255 , 0.3137255 ,
0.3137255]]]], dtype=float32)

X_test Numpy ndarray of 32 bit flotats array([[[[
0.42352942, 0.42352942],
 [[0.24705882, 0.24705882,
0.24705882],
 [0.47843137, 0.47843137,
0.47843137],
 [0.47058824, 0.47058824,
0.47058824],
 ...,
 [0.43529412, 0.43529412,
0.43529412],
 [0.39215687, 0.39215687,
0.39215687],
 [0.3529412 , 0.3529412 ,
0.3529412]],
 [0.37254903, 0.37254903,
0.37254903],
 [0.34509805, 0.34509805,
0.34509805],
 [0.3137255 , 0.3137255 ,
0.3137255]]]], dtype=float32)

20% of X has been allocated to this variable for model testing purposes

y_train Numpy ndarray of 32 bit float array([[0., 1.],
 [0., 1.],
 [0., 1.],
 [1., 0.],
 [0., 1.],
 [0., 1.],
 [0., 1.],
 [1., 0.],

80% of y has been allocated to this variable for model training purposes

 [1., 0.],
 [1., 0.],
 [1., 0.],
 [1., 0.],
 [0., 1.],
 [1., 0.],
 [0., 1.],
 [1., 0.]], dtype=float32)

y_test Numpy array of 32 bit float array([[1., 0.],
 [0., 1.],
 [1., 0.],
 [0., 1.]], dtype=float32)

20% of y has been allocated to this variable for model testing purposes

model keras.engine.sequential.Sequential
object

keras.engine.sequential.Sequential
object at 0x00000267F0BE6670

img_arr Numpy.ndarray of unsigned 8 bit
integers
Shape: (299, 299, 3)

[[[45, 45, 45],
 [43, 43, 43],
 [39, 39, 39],
 ...,
 [60, 60, 60],
 [54, 54, 54],
 [50, 50, 50]]]

Numpy array of the image so that the model can be trained (it obviously
cant just look at the picture, it has to analyse the numbers to learn
features).

evaluation List of floats [0.2148616462945938,
0.9612724781036377]

Validation loss and Accuracy

history keras.callbacks.History object <keras.callbacks.History object at
0x00000182BE190610>

Model history

file string “./images/photo.png” Path to image to be converted to array
arr Numpy ndarray [[[0 0 0]

 [0 0 0]
 [0 0 0]
 ...
 [0 0 0]
 [0 0 0]
 [0 0 0]]]

List of the image with reduced dimensions to 150x150

label_index Int 0 Get the index of the current label in LABELS (e.g. label ‘covid’ may
correspond to index 0)

Structure Chart

Context Diagram

Level 1 Dataflow Diagram

Level 2 Dataflow Diagram

	Program
	Project Log
	Logbook
	Gantt chart

	Annotated Source Code
	IPO Chart
	cli.py
	app.py
	predict.py
	load_and_train.py

	Testing Report
	Selecting the Optimal Convolution Neural Network Model Configuration
	Model Testing (training)
	Graphs obtained from training results (Tensorboard):
	Chosen Model: 6-conv-256-nodes-2-dense-3-dropout
	Validation vs Training Loss
	Validation vs Training Accuracy
	Selected Model layer info:

	Testing report of the software package
	Quality Assessment

	User Documentation
	Technical Documentation
	System Documentation
	Algorithm description for custom logic module
	Pseudocode:
	Flowchart

	Source code
	Refined Data Dictionary
	cli.py
	app.py
	Predict.py
	Load_and_train.py

	Structure Chart
	Context Diagram
	Level 1 Dataflow Diagram
	Level 2 Dataflow Diagram

